Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase.
نویسندگان
چکیده
A mitochondrial matrix copper ligand (CuL) complex, conserved in mammalian cells, is the likely source of copper for assembly of cytochrome c oxidase (CcO) and superoxide dismutase 1 (Sod1) within the intermembrane space (IMS) in yeast. Targeting the copper-binding proteins human Sod1 and Crs5 to the mitochondrial matrix results in growth impairment on non-fermentable medium caused by decreased levels of CcO. This effect is reversed by copper supplementation. Matrix-targeted Crs5 diminished Sod1 protein within the IMS and impaired activity of an inner membrane tethered human Sod1. Copper binding by the matrix-targeted proteins attenuates levels of the CuL complex without affecting total mitochondrial copper. These data suggest that attenuation of the matrix CuL complex via heterologous competitors limits available copper for metallation of CcO and Sod1 within the IMS. The ligand also exists in the cytoplasm in an apparent metal-free state.
منابع مشابه
"Pulling the plug" on cellular copper: the role of mitochondria in copper export.
Mitochondria contain two enzymes, Cu,Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper ...
متن کاملAn Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase
In eukaryotes, the Cu/Zn superoxide dismutase (SOD1) is a major cytosolic cuproprotein with a small fraction residing in the mitochondrial intermembrane space (IMS) to protect against respiratory superoxide. Curiously, the opportunistic human fungal pathogen Candida albicans is predicted to express two cytosolic SODs including Cu/Zn containing SOD1 and manganese containing SOD3. As part of a co...
متن کاملRegulation of copper homeostasis by micro-RNA in Arabidopsis.
Major copper proteins in the cytoplasm of plant cells are plastocyanin, copper/zinc superoxide dismutase, and cytochrome c oxidase. Under copper limited conditions, expression of copper/zinc superoxide dismutase is down-regulated and the protein is replaced by iron superoxide dismutase in chloroplasts. We present evidence that a micro-RNA, miR398, mediates this regulation in Arabidopsis thalian...
متن کاملIron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis.
Previous phenotyping of glucose homeostasis and insulin secretion in a mouse model of hereditary hemochromatosis (Hfe(-/-)) and iron overload suggested mitochondrial dysfunction. Mitochondria from Hfe(-/-) mouse liver exhibited decreased respiratory capacity and increased lipid peroxidation. Although the cytosol contained excess iron, Hfe(-/-) mitochondria contained normal iron but decreased co...
متن کاملThe P174L mutation in human Sco1 severely compromises Cox17-dependent metallation but does not impair copper binding.
Sco1 is a metallochaperone that is required for copper delivery to the Cu(A) site in the CoxII subunit of cytochrome c oxidase. The only known missense mutation in human Sco1, a P174L substitution in the copper-binding domain, is associated with a fatal neonatal hepatopathy; however, the molecular basis for dysfunction of the protein is unknown. Immortalized fibroblasts from a SCO1 patient show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 281 48 شماره
صفحات -
تاریخ انتشار 2006